Manuka Honey Scientific studies

 

Manuka honey has been the main subject of several scientific studies, both in New Zealand and all around the world.

Many scientific articles have been written regarding its properties and many more are in the making, since the interest of the scientific community for this unique honey is increasing.

Here are references to some of these studies which have been conducted up to date. We are constantly updating the list to keep you always up to date with the last discoveries.

 

Adams C. J., Manley-Harris M., Molan P. C. The origin of methylglyoxal in New

Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research, 2009, 344, 1050-1053.

Afrin, S., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y., Cianciosi, D., Roboredo-Rodriguez, P., Amici, A., Quiles, J. L., Battino, M. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 1: the suppression of cell proliferation, promotion of apoptosis and arrest of the cell cycle. Food Funct., 2018a, 9, 2145.

Afrin, S., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y., Cianciosi, D., Roboredo-Rodriguez, P., Manna, P. P, Zhang, J., Quiles, J. L., Battino, M. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 2: Introduction of oxidative stress, alteration of mitochondrial respiration and glycolysis, and suppression of metastatic ability. Free Radic Biol Med., 2018b, 126, 41-45.

Allen, K. L., Molan, P. C., Reid, G. M. A survey of the antibacterial activity of some New Zealand honeys. J. Pharm. Pharmacol. 1991, 43, 817-822.

Ames, J.M. Evidence against dietary advanced glycation endoproducts being a risk to human health. Mol Nutr Food Res, 2007, 51, 1085-1090.

Atrott J., Haberlau S., Henle T. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Carbohydrate Research, 2012, 361, 7-11.

Biglari, B., Moghaddam, A., Santos, K., Blaser, G., Buechler, A., Jansen, G. et al. Multicentre prospective observational study on professional wound care using honey (Medihoney). Int. Wound J., 2013, 10, 252-259. 30

Blair, S., Cokcetin, N., Harry, E., Carter, D. The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. Eur. J. Clin. Microbiol Infect. Dis., 2009, 28, 1199-1208.

Bogdanov, S. Characterization of antibacterial substances in honey. Lebensm. Wiss. Technol. 1984, 17, 74–76.

Burlando, B., Cornara, L. Honey in dermatology and skin care: a review. J. Cosmet Dermatol., 2013, 12 (4), 306-313.

Carter, D. A., Blair, S. E., Cokcetin N. N., Bouzo D., Brooks, P., Schothauer, R., Harry, J. Therspeutic Manuka Honey: No Longer So alternative. Front Microbiol., 2016, 7, 569.

Daglia, M., Ferrari, D., Collina, S., Curti, V. Influence of in Vitro stimulated grastoduodenal digestion on Methylglyoxal concentration of Manuka (Lectospermum scoparium) Honey. J. Agric. Food Chem., 2013, 61, 2140-2145.

Dart, A,, Bischofberger, A., Dart, C., Jeffcott, L. A review of research into second intention equine wound Healing using manuka honey: current recommendations and future applications. Equine Vet Educ., 2015, 27, 658-664.

Degen, J., Vogel, M., richter, D., Hellwig, M., Henle, T. Metabolic transit of dietary Methylglyoxal. J. Agric. Food Chem, 2013, 61, 10253-10260.

Dold, D., Du, D. H., Dziao, S. T. Nachweis antibakterieller, hitze- und lichtempfindlicher Hemmstoffe (Inhibine) im Naturhonig. Z. Hyg. Infekt. 1937, 120, 155-167. 31

George, N. M., Cutting K. F. Antibacterial honey (Medihoney): in vitro activity against clinical isolates of MRSA, VRE, and other multiresistant gram-negative organisms including Pseudomonas aeruginosa. Wounds, 2007, 19, 231.

Girma, A., Seo, W., She, R. C. Antibacterial activity of varying UMF-graded Manuka honeys. Plos One, 2019, 14, 10.

Goslinski, M., Nowak, D., Klebukowska, L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys. J. Food Sci Technol. 2020, 57(4), 1269-1277.

Grainger M.N, Manley-Harrys M., Lane J.R., Field R.J. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand manuka honey: Part II-Model Systems. Food Chem., 2016b, 202, 492-499.

Grainger M.N, Manley-Harrys M., Lane J.R., Field R.J. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand manuka honey: Part I-Honey Systems. Food Chem., 2016a, 202, 484-491.

Kamaratos, A. V., Tzirogiannis, K. N., Iraklianou S. A., Panotsopoulos, G.I., Kanellos, E., Melidonis, A.I. Manuka honey-impregnated dressings in the treatment of neurophatic diabetic foot ulcers. Int. Wound J., 2014, 11(3), 259-263.

Kato, Y., Kishi, Y., Okano, Y., Kawai, M., Scimizu, M., Suga, N., Yakemoto, C., Kato, M., Nagata, A., Miyoshi, N. Methylglyoxal binds to amines in honey matrix and 2’-methoxyacetophenone is released in gaseous form into the headspace on the heating of manuka honey. Food Chemistry, 2020, 337.

Lee, V. S., Humphreys I. M., Purcell, P.L., Davis, G. E. Manuka honey sinus irrigation of the treattment of chronic rhinosinusitis: a randomized controll trial. Int Forum Allergy Rhinol., 2017, 7(4), 365-372. 32

Lima, W. G., Brito, J. C. M., da Cruz Nizer, W. S.. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARSR-CoV-2). Phytotherapy Research, 2020, 1-8.

Lu, J., Turnbull, L., Burke, C. M., Liu, M., Carter, D. A., Schlothauer, R. C., et al. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus starins with different biofilm-forming abilities. PeerJ, 2014, 2, 326.

Maddocks S. E., Jenkins, R. E. , Rowlands, R. S., Purdy, K. J., Cooper, R. A. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro. Fut. Microbiol, 2013, 8, 1523-1536.

Maddocks S. E., Lopez, M. S. , Rowlands, R. S., Cooper, R. A. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology, 2012, 158, 781-790.

Majtan, J. Honey: an immunomodulator in wound healing. Wound Repair Regenerat., 2014, 22, 187-192.

Malhotra, R., Ziahosseini, K., Poitelea, C., Litwin, A., Sagili, S. Effect of Manuka honey on eyelid wound healing: a randomized controlled trail. Ophtalmic Plast Reconstr Surg., 2017, 33(4), 268-272.

Mavric, E., Wittman, S., Barth, G., Henle, T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honey from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483-489.

Molan, P. C. The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World 1992, 73, 5-28. 33

Nickless, E. M. Influential Factors in Nectar Composition and Yield in Leptospermum scoparium. Ph. D. thesis, Massey University, Palmerston North, New Zealand, 2015.

Russell, K. M., Molan, P.C., Wilkins, A. L., Holland, P. T. Identification of some antibacterial constituents of New zealand manuka honey. J. Agric. Food Chem. 1990, 38, 10-13.

Shahzad, A., Cohrs, R. J. In vitro animal activity of honey against varicella zoster virus (VZV): a translational medicine study for potential remedies for shingles. Transl. Biomed., 2012, 3.

Stephens, J. M.C. The factors responsible for the varying levels of UMF in manuka (Leptospermum scoparium) honey. Ph. D. dissertation, The Waikato University, Hamilton, New Zealand, 2006.

Tang, J. S., Compton, B. J., Marshall, A., Anderson, R., Li, Y., van der Woude, H., Hermans, I. F., Painter, G. F., Gasser, O. Manuka honey-derived methylglyoxal enhances microbial sensing by mucosal-associated invariant T cells. Food Funct., 2020, 11, 5782-5787.

Wallace, A., Eady, S., Miles, M., martin, H., McLachlan, A., Rodier, M., Willis, J., Scott, R., Sutherland, J. Demostrating the safety of manuka honei UMF 20+ in a human clinical trial with healty individuals. British Journal of Nutrition, 2010, 103, 1023- 1028.

 

Watanabe, K., Rahmasari, R., Matsunaga, A., Haruyama, T., Kobayashi, N. Antiinfluenza Viral Effect of Honey In Vitro: Potent High Activity of manuka Honey. Arch. Med. Res., 2014, 45, 359-365. 34

Williams, S., King, J., Rvell, M., Manley-Harris, M., Balks, M., Janusch, F., Kiefer, M., Clearwater, M., Brooks, P., Dawson, M. Regional, Annual, and Individual Variations in the Dihydroxyacetone Content of the Nectar of Manuka (Leptospermum scoparium) in New Zealand. J. Agric. Food Chem., 2014, 62, 10332-10340.

Weston, R. J. The contribution of catalase and other natural products to the antibacterial activity of honey: A review. Food Chemistry 2000, 71(2), 235-239.